Woodland Academy Trust
EYFS Calculation Document

Progression in the use of manipulatives to support learning (How we support children's concrete understanding of maths)						
Foundation	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Real-life objects	Real-life objects	Mini-whiteboards	Mini-whiteboards	Mini-whiteboards	Mini-whiteboards	Mini-whiteboards
0-9 digit cards	0-9 digit cards	Place value cards			Protractors	Protractors
Number track/line to 20	Number line to 20 and 50	Number line to 100	Number line to 100	Number line including negative numbers	Number line including negative numbers	Number line including negative numbers
Meter/Counting stick						
		Transparent rulers				
Tens frame	Tens frame and hundred square					
Building blocks	Place value charts - Tens and ones	Place value charts Ones to hundreds	Place value charts Ones to Thousands	Place value charts Ones to Ten thousands	Place value charts to a million and three decimal places	Place value charts to 10 million and three decimal places
Containers that are different shapes and sizes	Containers that are different shapes and sizes	Fraction bars, walls, circles (centralised storage)				
Numicon shapes	Numicon shapes/ Dienes	Dienes	Dienes	Dienes	Dienes	Dienes
Sorting hoops	Sorting hoops	Sorting hoops	Place value counters	Place value counters	Place value counters	Place value counters
Big Dice	Place value arrow cards - tens and ones	Place value arrow cards - tens and ones	Place value arrow cards $-\mathrm{H}, \mathrm{~T}, \mathrm{O}$	Place value arrow cards - H, T, O	Place value arrow cards	Place value arrow cards
Part-part-whole mat	Part-part-whole mat	Part-part-whole mat	Part-part-whole model	Part-part-whole model	Part-part-whole model	Part-part-whole model
Transparent counters						
Bar model with reallife objects	Bar model pictorial objects/ representative objects e.g. counters	Bar model with counters /Dienes progressing to numbers	Plastic mirrors	Plastic mirrors	Plastic mirrors	Plastic mirrors
Bead strings - ten	Bead strings twenty/fifty	Bead strings - hundred				
Dice						
Cuisenaire rods						
Double sided counters						
Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount
Maths balances			Weighing scales			
Solid geometric shapes (centralised storage)						
Coins and notes (centralised storage)						
Clock (geared) (centralised storage)						

Maths Working Wall (How we use displays to support children's understanding of mathematical concepts)		
Build it	Use a real-life representation of the concept, which children can see, touch and feel.	Show a pictorial representation of the concept. $2 \times 2=12$ $12 \div 2=6$ $12 \div 6=2$ Factors of 12 are: 1, 2, 3, 4, 6 and 12
Draw it	Show the mathematical representation of the concept	$1 \times 2=2$ $2 \times 2=4$ $3 \times 2=6$ etc.
Solve it	Practise it	Encourage children to practice the concept. Interactive opportunity - ask children to respond to questions, encourage them to add what they know, leave homework for children to take to master the concept.
Challenge itSet a challenge to be solved. Interactive opportunity - leave real-life objects or manipulatives for children to use to help solve the challenge.	How many different ways can 12 eggs be arranged into arrays? What if you try 24 eggs?	
Say it	Use vocabulary related to the concept	Multiply, multiplication, repeated addition, array, divide, group, multiples, factors

Classroom visual prompts (How we represent maths to the children pictorially)						
Foundation	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Big focus 10	Big focus 20	Big focus 100				
Place Value Chart 10	Place Value Chart 20	$\begin{gathered} \hline \text { Place Value Chart } \\ 100 \end{gathered}$	Place Value Chart Th- tenths	Place Value Chart Tth- Hundredths	Place Value Chart M- Thousandths	Place Value Chart M- Thousandths
Numicon number line with Numicon shapes	Numicon number line with Numicon shapes	Fractions number line	Fractions number line	Fractions and decimals number line	Fractions, decimals and percentages number line	Fractions, decimals and percentages number line
Odd and even numbers	Odd and even numbers	Odd and even numbers	Factors and multiples	Factors and multiples	Factors, prime and composite numbers	Number properties
	Number bonds to 10 Number bonds to 20	Number bonds to 10 Multiples of 10 totalling 100	Number bonds to 10 Multiples of 10 totalling 100			
$\begin{gathered} \hline 0-20 \text { number line } / \\ \text { track } \end{gathered}$	0-50 number line	0-100 number line	Number line to 100	Number line including negative numbers	Number line including negative numbers	Number line including negative numbers
	100 square					
Number names from 0 -10	Number names of multiples of 10	Number names from 0 -100	$\begin{gathered} \hline \text { Number names from } 0 \\ -1000 \\ \hline \end{gathered}$	Number names to hundred thousands	Number names to one million	Number names to million
Real coins and Large coins						
Counting in 1s and 2s	$2,5 \text { and } 10$ multiplication tables	2, 4 and 8 multiplication tables	$3,6 \text { and } 12$ multiplication tables	7,9 and 11 multiplication tables All multiplication tables up to 12×12	All multiplication tables up to 12×12	All multiplication tables up to 12×12
Counting in 1s and 2s multiplication table patterns and divisibility rules and connections.	2, 5 and 10 multiplication table patterns and divisibility rules and connections. Display after introducing the times tables to the children.	2, 4 and 8 multiplication table patterns and divisibility rules and connections. Display after introducing the times tables to the children.	3, 6 and 12 multiplication table patterns and divisibility rules and connections. Display after introducing the times tables to the children.	All multiplication table patterns and divisibility rules Connections between 5/10, 3/6/12, 2/4/8 Also focus on 1, 7, 9 and 0 multiplication table.	All multiplication table patterns and divisibility rules Connections between 5/10, 3/6/12, 2/4/8 Also focus on 1, 7, 9 and 0 multiplication table. Square and cube numbers	All multiplication table patterns and divisibility rules Connections between 5/10, 3/6/12, 2/4/8 Also focus on 1, 7, 9 and 0 multiplication table. Square and cube numbers
			Roman numerals	Roman numerals	Roman numerals	Roman numerals
The = sign means not an answer but is equivalent to	The = sign means not an answer but is equivalent to	The = sign means not an answer but is equivalent to	The = sign means not an answer but is equivalent to	The = sign means not an answer but is equivalent to	The = sign means not an answer but is equivalent to	The = sign means not an answer but is equivalent to
2D and 3D shapes						

Progression in the teaching of counting in Foundation Stage

Subitising (recognise small numbers without counting them)

Children need to recognise small amounts without counting them e.g. dot patterns on dice, dots on tens frames, dominoes and playing cards as well as small groups of randomly arranged shapes stuck on cards.

Subitising ideas

Provide children with opportunities to count by recognising amounts.

Abstraction

You can count anything - visible objects, hidden objects, imaginary objects, sounds etc. Children find it harder to count things they cannot move (because the objects are fixed), touch (they are at a distance), see, move around. Children also find it difficult to count a mix of different objects, or similar objects of very different sizes.

How many pigs are in this picture? Provide children with a variety of objects to count.

Conservation of number -

 MASTERY!Ultimately children need to realise that when objects are rearranged the number of them stays the same.

Conservation of Number
The amount is "seven" and doesn't change.

End of year counting expectations

- count reliably to 20
- count reliably up to 10 everyday objects
- estimate a number of objects
then check by counting
- use ordinal numbers in context
e.g. first, second, third
- count in twos, fives and tens
- order numbers 1-20
- say 1 more/ 1 less than a given number to 20

